

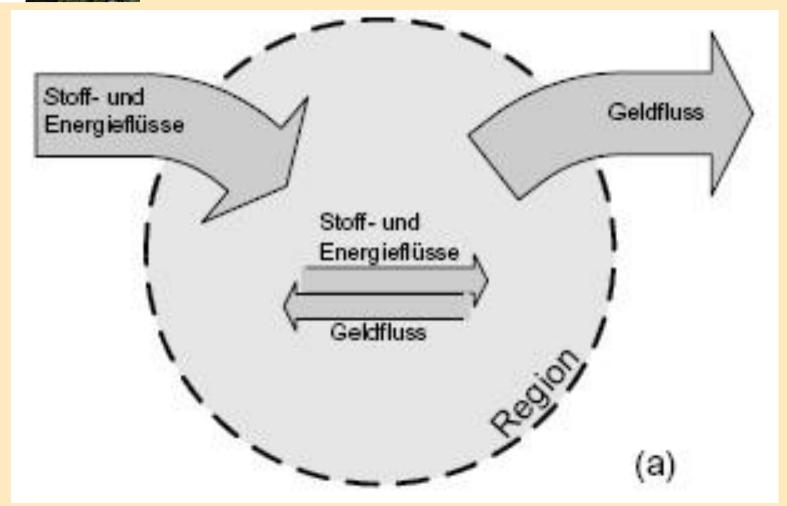
Warum Wärmenetze hochsinnvoll sind

Was sehen Sie auf diesem Bild? Einen modernen Öl-Tanker?

Nein, einen getarnten Geld-Transporter!

Ein moderner Supertanker transportiert bis zu 300.000 t Rohöl, das sind ~ 2 Mio brl

Bei einem Rohölpreis von ~ 80 \$ / brl (Durchschnitt der letzten 10 Jahre) sind das ~ 160 Mio \$ / ~ 140 Mio Euro

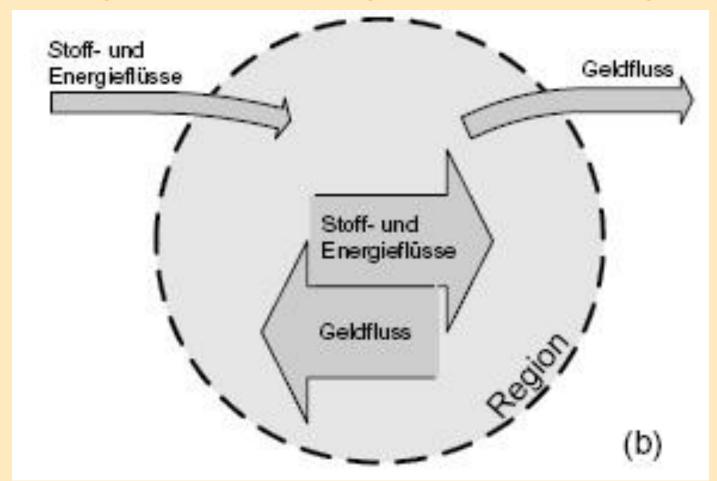

Die globale Weltwirtschaft besteht aus Warenströmen und Geldströmen. Wenn der Tanker scheinbar "leer" zurück fährt, nimmt er das Geld mit:

140 Mio Euro bei jeder Fahrt!

Kaufkraftverlust durch fossile Energien

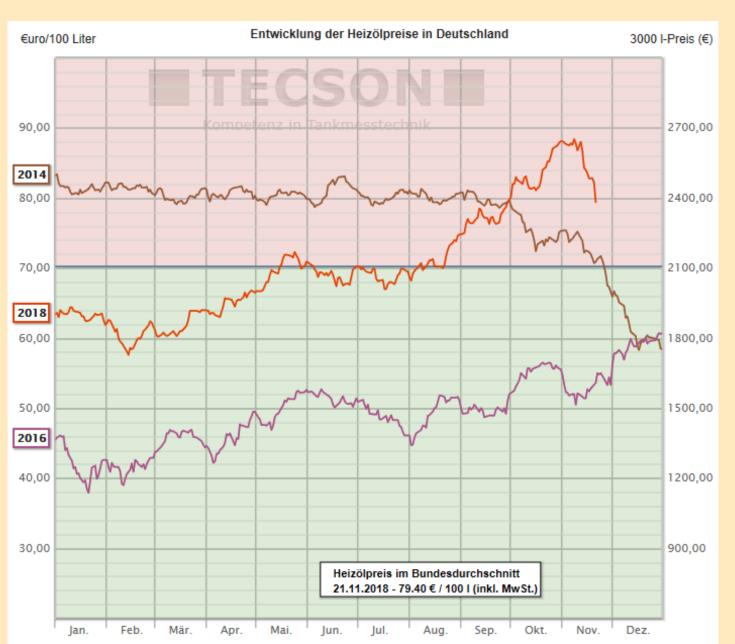
Überwiegend fossil versorgte Region =wachsender Kaufkraftabfluss und Wohlstandsverlust selbst
bei gleichbleibendem Energiebedarf (wg. steigender Preise)

Hat Breitenholz eigenes Öl?


Musterrechnung:

- etwa 200 Gebäude
- im Mittel 3.000 Liter/Jahr
- Ölpreis im Mittel der letzten 10 Jahre ca. 75 ct / Liter (aktuell über 90 ct)
- = 450.000 Euro pro Jahr (200 x 3.000 x 0,75)
- = 9 Mio Euro in 20 Jahren (ohne Preissteigerung)
- = ca. 18 Mio Euro in 20 Jahren (mit Preissteigerung 5% p.a.)

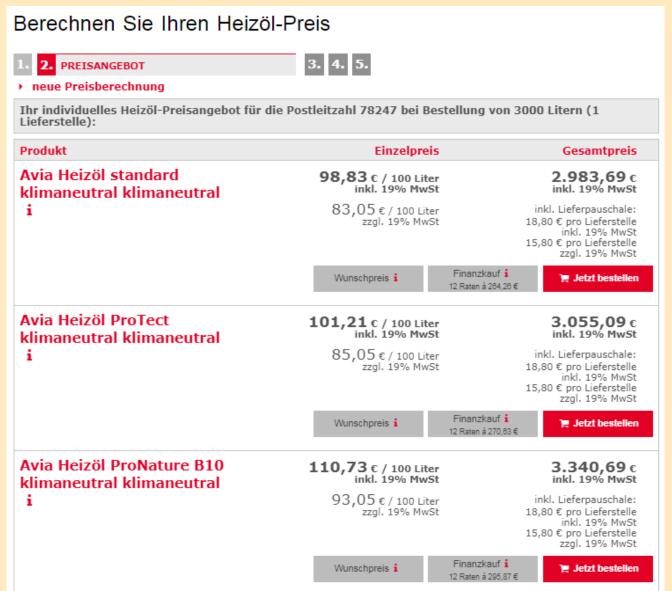
Regionale Wertschöpfung durch heimische Energien



Überwiegend heimisch versorgte Region = hohe Kaufkraftbindung und Wohlstandssicherung

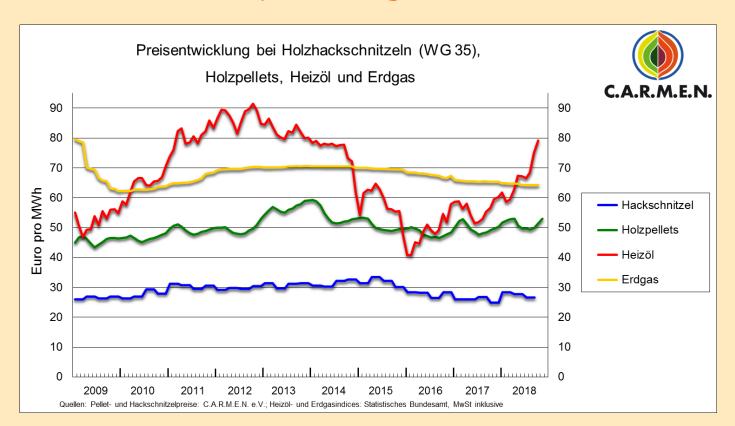
- seit Jan 2016 (37 ct / l) mehr als verdoppelt

- aktuell wieder höher als vor Absturz Herbst 2014



Quelle: www.tecson.de

Preise Süddeutschland deutlich über Bundesschnitt wegen Niedrigwasser Rhein



10-Jahres-Vergleich

Rot: Preisentwicklung Heizöl

- krasse Preisausschläge
- seit Mitte 2015 stark steigend

Blau: Preisentwicklung Hackschnitzel

- HS-Preis ist nahezu gleich wie vor 10 Jahren
- in den letzten 3 Jahren sogar rückläufig

solarcomplex in Kürze:

- Ziel: Umbau der regionalen Energieversorgung auf erneuerbare Energien
- gegründet 2000 von 20 Bürgern mit 37.500 €
- aktuell gut 1.200 Gesellschafter mit 18 Mio € Eigenkapital Privatpersonen, Firmen, Stadtwerke und Bürgerenergiegenossenschaften
- moderate Renditeerwartung (4% aufs Grundkapital)
- rund 40 Mitarbeiter, ein "regeneratives Stadtwerk"
- ~ 30 MW PV-Anlagen (Dach und Freiland)
- Wasserkraftwerk Singen
- Windkraft St. Georgen, Renquishausen, Verenafohren, gesamt 12 MW
- > 100 km Nahwärmenetze
- solarcomplex hat im Süden Baden-Württembergs sehr viel Erfahrung mit Planung, Bau <u>und vor allem Betrieb</u> von regenerativen Wärmenetzen

Regenerative Wärmenetze, das erste Dutzend ...

Mauenheim

Lippertsreute

Schlatt

Randegg

Lautenbach

Messkirch

Weiterdingen

Büsingen

Emmingen

Grosselfingen

Bonndorf I

Hilzingen

(Inbetriebnahme 2006)

(Inbetriebnahme 2008)

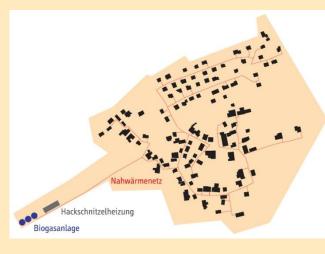
(Inbetriebnahme 2009)

(Inbetriebnahme 2009)

(Inbetriebnahme 2010)

(Inbetriebnahme 2011)

(Inbetriebnahme 2011)


(Inbetriebnahme 2012)

(Inbetriebnahme 2013)

(Übernahme 2013)

(Inbetriebnahme 2014)

(Übernahme 2015)

Bioenergiedorf Mauenheim

Grün = mit Abwärme aus Biogas-BHKW

... das zweite Dutzend ist in Arbeit:

Bonndorf II (Inbetriebnahme 2016)

Wald (Inbetriebnahme 2016)

Renquishausen (Beteiligung 50%, seit 2017)

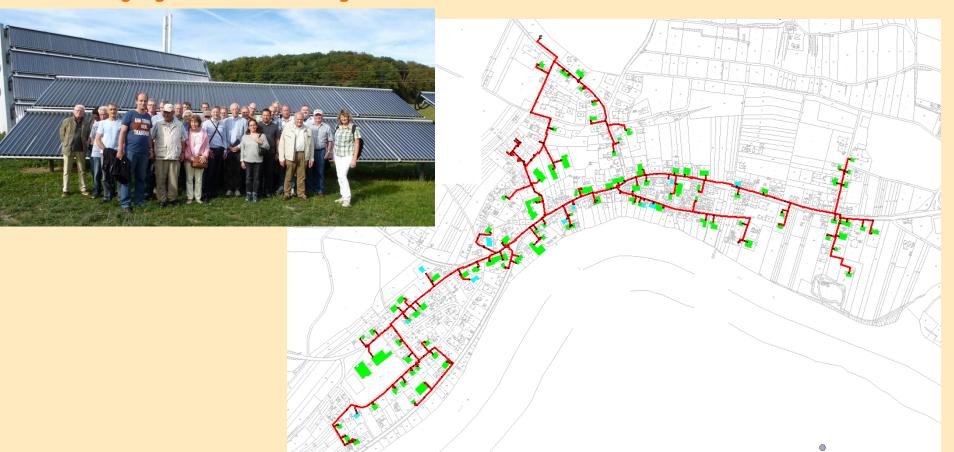
Veringendorf (Inbetriebnahme 2018)

Storzingen (Inbetriebnahme 2018)

Schluchsee (in Bau 2018 / 2019)

Hausen i. Tal (in Bau 2018 / 2019)

Bonndorf III (in Planung, 2019 / 2020)


Grün = mit Abwärme aus Biogas-BHKW

= mit großem Solarkollektorfeld

Büsingen

- Deutschlandweit erstes Bioenergiedorf mit großer Solarthermie: 1.090 m² Kollektorfläche, 2 x 50 m³ Pufferspeicher
- Netz in Betrieb seit 2012, Kollektorfeld seit 2013
- Deckungsgrad im Sommer 100%, übers Gesamtjahr ca. 15%
- Besichtigung Breitenholzer Delegation war am 22.09.2018

Unterkonstruktion wie Freiland-PV

- Gerammte Stahlprofile
- keine Fundamente, keine Versiegelung
- mit Schafen beweidet

Faktor 60 kann nicht ignoriert werden!

Ein Hektar Wald

- Zuwachs im Schnitt ca. 10 Fm / a
- 1 Fm ~ 2.000 kWh
- = ~ 20.000 kWh je ha / a

Ein Hektar mit Solarkollektoren

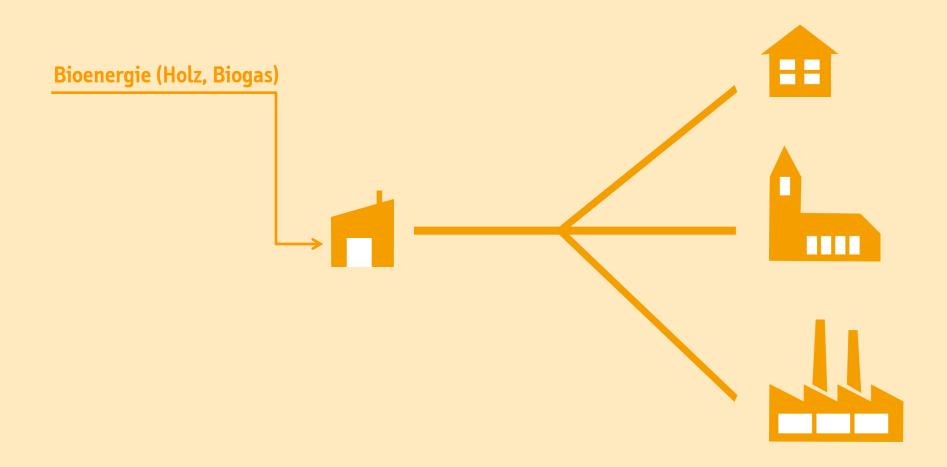
- mit Reihenabstand 1:2 gut 3.000 qm
- > 400 kWh / qm
- = > 1,2 Mio kWh je ha / a

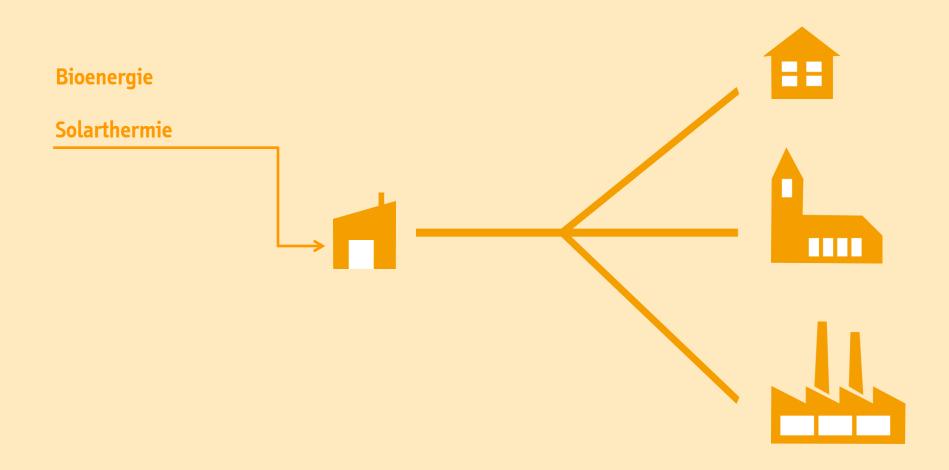
Ziele

- im Sommer werden die Holzkessel komplett abgeschaltet, kein unwirtschaftlicher Teillastbetrieb, Brauchwarmwasser nur aus Solarkollektoren
- in der Übergangszeit werden die Holzkessel solar unterstützt
- in der eigentlichen Heizperiode Beitrag sehr gering noch <u>keine</u> saisonale Speicherung
- solarer Deckungsanteil im Sommer 100%, übers Gesamtjahr ~ 15% Hackschnitzeleinsparung ca. 700 sm³ / Jahr
- Erzeugungskosten je kWh sind dauerhaft gesichert, weil Kosten fast ausschließlich Kapitalkosten (am Anfang)

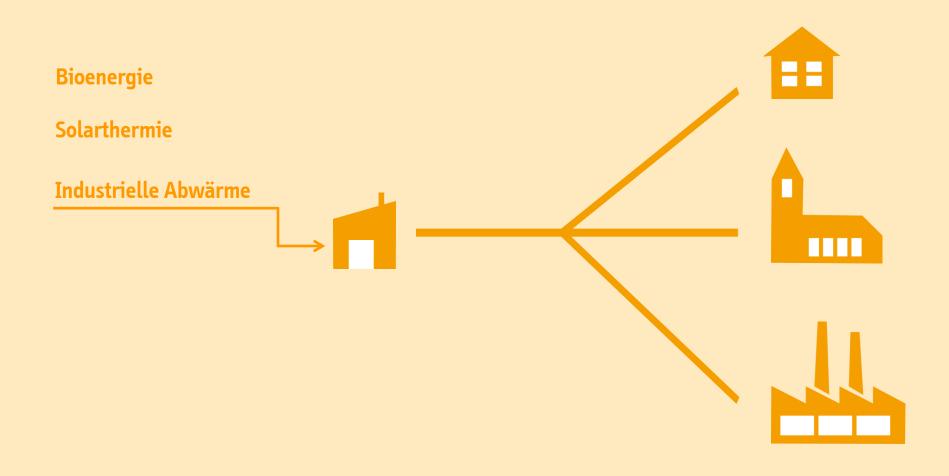
Randegg

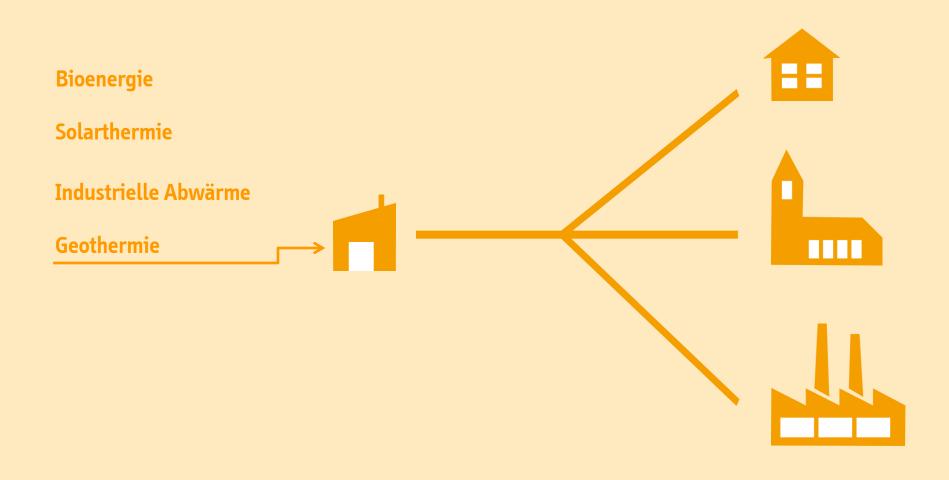
- 2.400 m² Kollektorfläche, 3 x 100 m³ Pufferspeicher
- Netz in Betrieb seit 2009, Nachrüstung Kollektorfeld 2018
- Deckungsgrad im Sommer 100%, übers Gesamtjahr ca. 20%

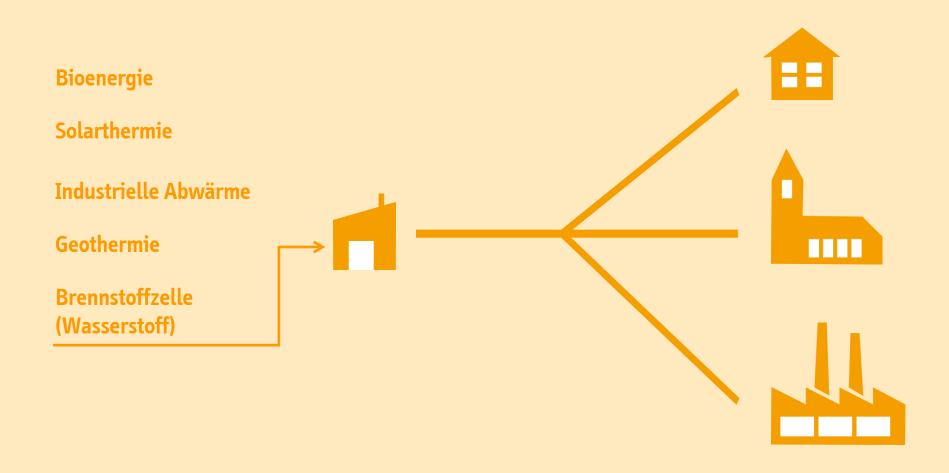


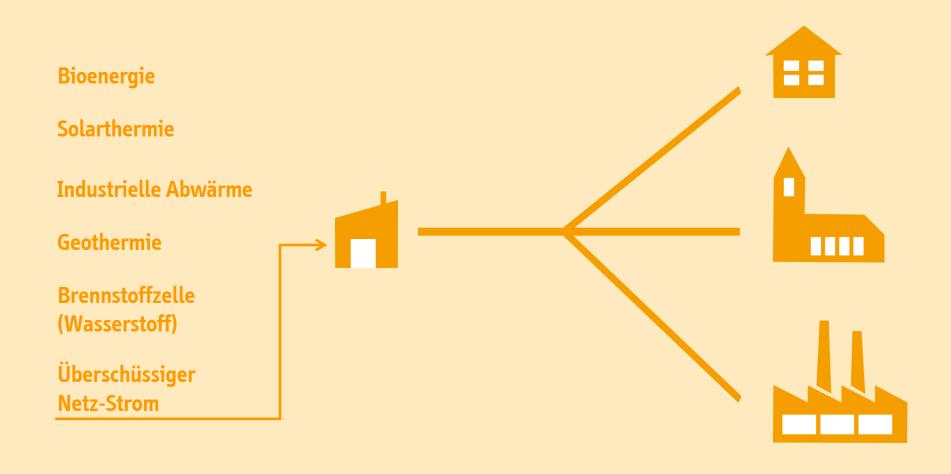

Was spricht für Wärmenetze?

- Die Wärmewende gelingt <u>schneller</u>, weil von der ersten Infoveranstaltung bis zur ersten Wärmelieferung 1,5 bis max. 2 Jahre vergehen Dann ist ein ganzes Quartier oder ein Dorf oder ein Stadtteil umgestellt
- Im Gegensatz dazu handeln private Heizungsbetreiber / Hauseigentümer erst, wenn der Leidensdruck hoch genug ist oder die Anlage hoffnungslos veraltet = mind. nochmal 20 Jahre
- Es können Synergien genutzt werden: Glasfaser, Sanierung Wasser / Abwasser ...
- Der Ort ist für jede regenerative Energiezukunft gerüstet, weil ein Netz nur eine Verteilstruktur ist, die Energiequelle aber **flexibel** ...

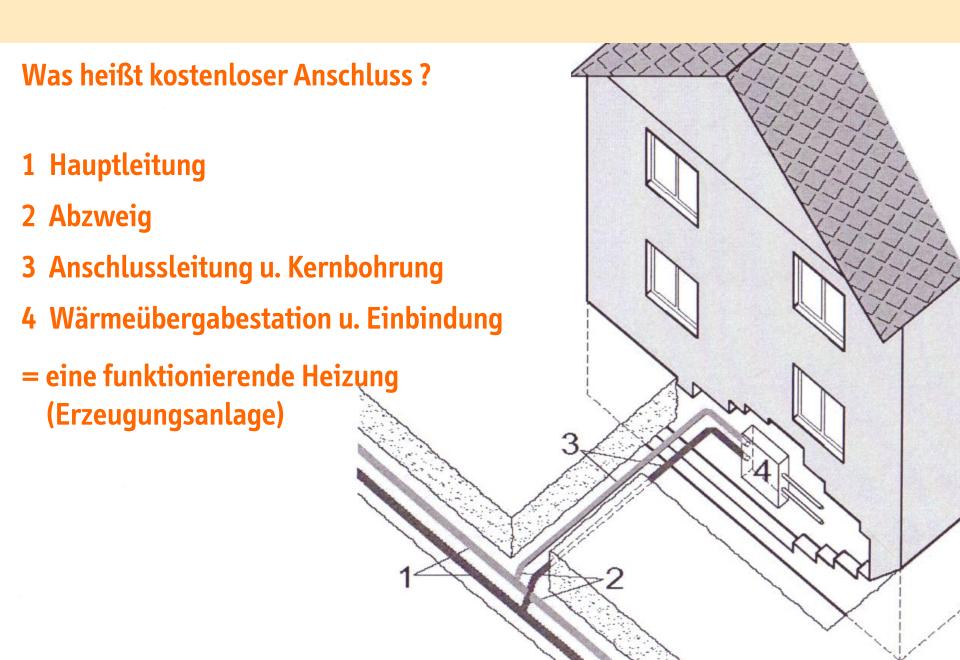






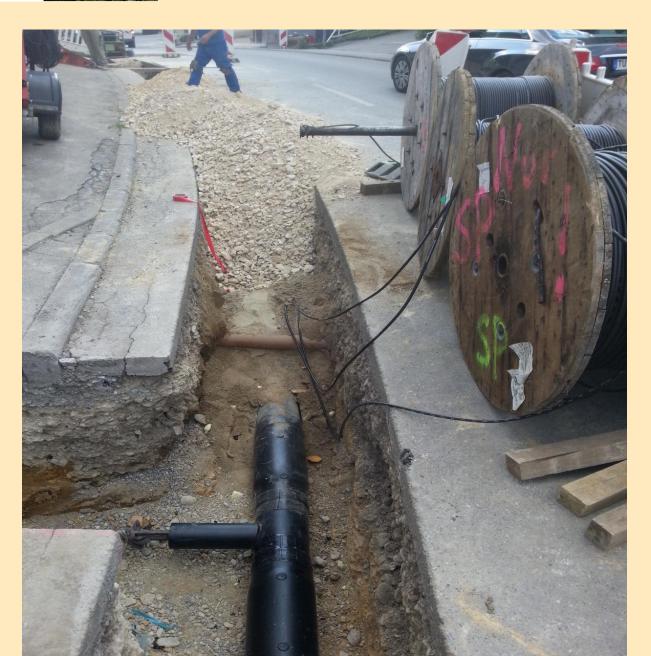


Fazit:


Wärmenetze auf Basis heimischer erneuerbarer Energien:

- vereinen Klimaschutz und regionale Wertschöpfung:
- machen eine Gemeinde "zukunftsfest" und bieten viele Optionen
- können in jedem Ort auf den jeweiligen lokalen Potentialen aufsetzen
- beschleunigen den Umstieg im Wärmesektor erheblich

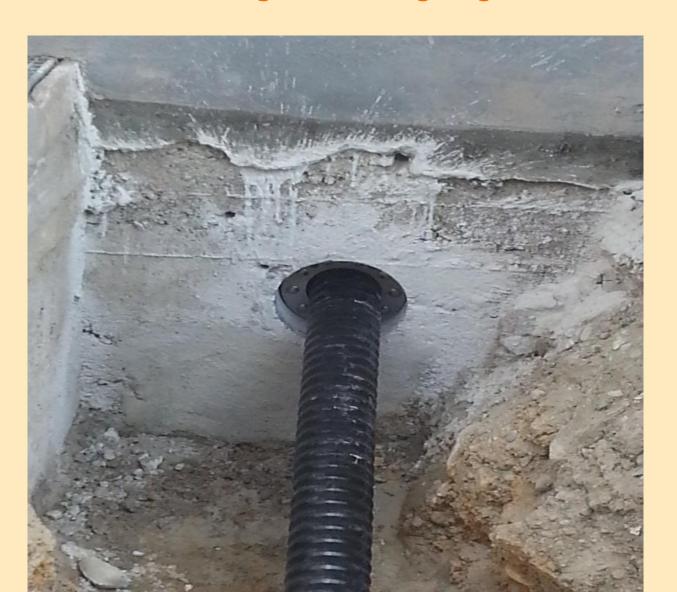
Bei frühzeitiger Koordination Option für Synergien:


- Mitverlegung Glasfaser
- Sanierung Wasser / Abwasser
- Sanierung Strassen / Gehwege
- = mehrere Modernisierungsschritte in einem (Kostenteilung Tiefbau)

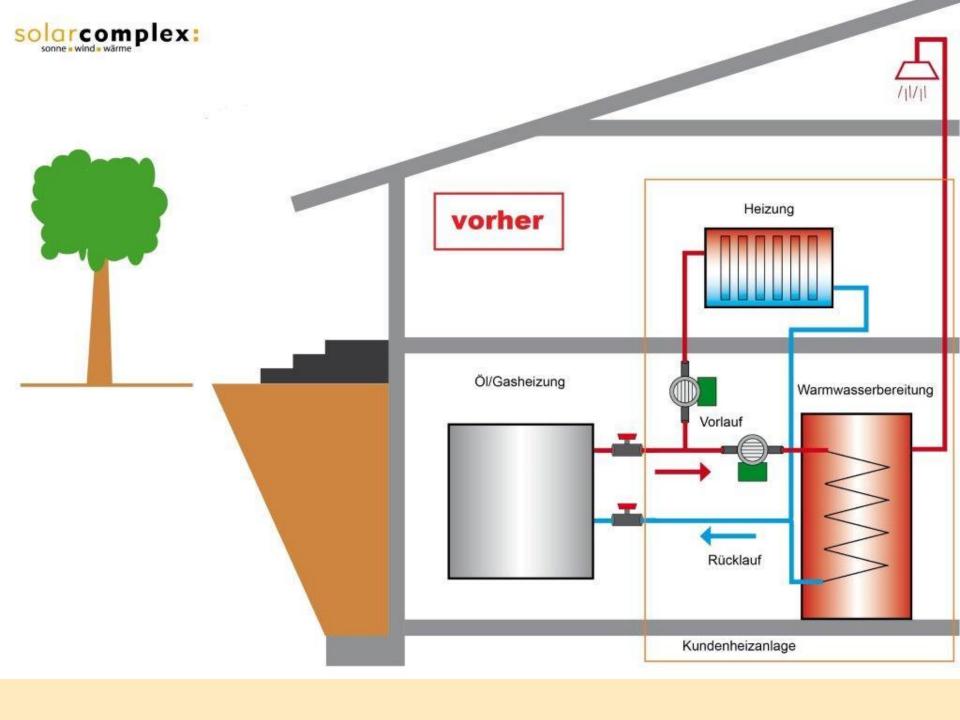
Hauptleitung

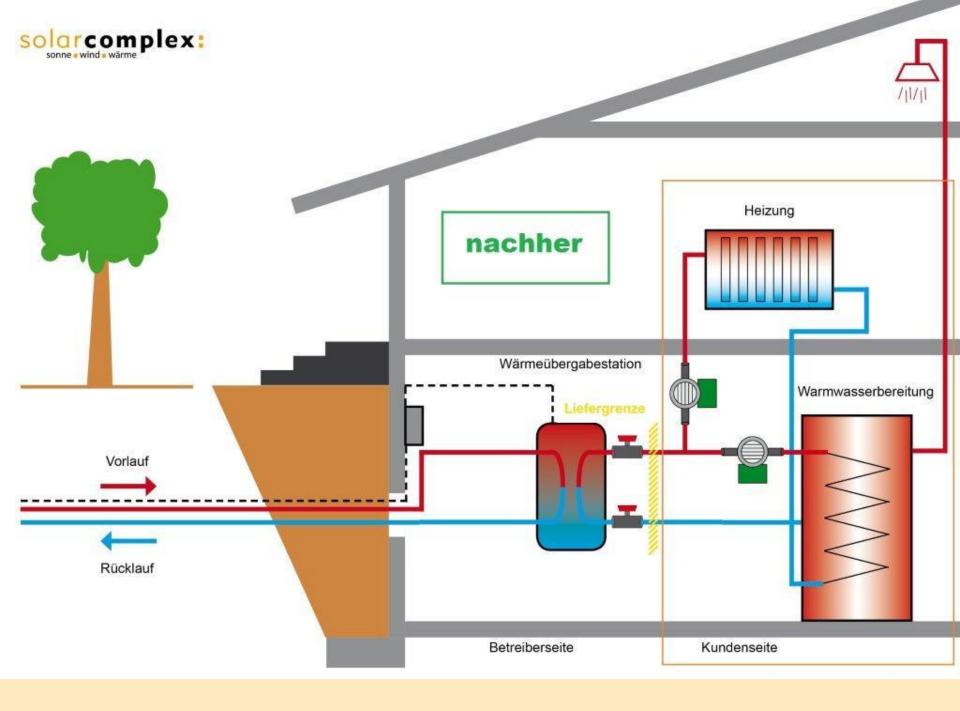
Abzweig mit T-Stück

Datenkabel


Kernbohrung vom Hausanschlussgraben ins Gebäude

Wanddurchführung mit Dichtungsring




Hausanschlussstation (HAST)

- hydraulische Trennung Netz Heizungsverteilung mit Wärmetauscher
- Fernwartung + Zählerauslesung über Datenleitung
- Platzbedarf etwa wie Elektrozählerkasten

"Gesetz zur Nutzung erneuerbarer Wärmeenergie" in BW

Die Eckpunkte:

- Geltungsbereich für Bestandsgebäude
- seit 01.01.2010 (bei Änderungen an Heizungsanlage)
- Pflichtanteil regenerativ am Wärmebedarf derzeit 15% (wurde bereits einmal erhöht)
- durch frei wählbaren Einsatz von eE: Biomasse (z.B. Pellets), Solarthermie, Wärmepumpe, Bio-Heizöl, Bio-Erdgas u.a.

Mit dem Anschluss an ein regeneratives Nahwärmenetz hat man nicht 15% Anteil erneuerbarer Energien, sondern fast 100%!

Jede zukünftig denkbare gesetzliche Auflage ist erfüllt. Ohne zusätzliche Investition!

Situation Breitenholz

- Bisher erheblicher Energieeinsatz aus fossilen Energien für Wärme (Kaufkraftverlust <u>und</u> Klimaschaden)
- Regenerative Energien vor der Haustür sind weitgehend ungenutzt
- Aufbau eines Wärmenetzes mit heimischen erneuerbaren Energien bedeutet Klimaschutz <u>und</u> regionale Wertschöpfung
- BEG Tübingen ist bereit und interessiert, ein Wärmenetz zu bauen und dauerhaft zu betreiben
- Positive Grundsatzentscheidungen des Ortschaftsrats und des Gemeinderats liegen vor

Fragebogen Vorplanung

Gebäudeanschrift:	
1) <u>Eigentümer</u>	
Name und Anschrift:	
Telefonnummer (tagsüber erreic	ehbar):
Mailadresse:	
2) opt.: weitere Person m	it Zugang zum Gebäude (Mieter, Hausmeister)
Name und Anschrift:	
Telefonnummer (tagsüber erreic	hbar):
3) Fragen zum Gebäude	
Baujahr	Sanierung
□ EFH Einfamilienhaus	□ MFH Mehrfamilienhaus □ Gewerbe
Anzahl Bewohner im Gebäude:	Beheizbare Fläche ca.: m ²
□ zentral beheizt	□ Etagenheizung

4) Bisheriger Jährlicher Energieverbrauch für Heizung und Warmwasser				
Heizöl	_Liter / Jahr	Pellets	_ Tonnen / Jahr	
Erdgas	_ m³ / Jahr	Hackschnitzel	Srm / Jahr	
Flüssiggas	Liter / Jahr	Strom (Nachtspeicher)	kWh / Jahr	
Scheitholz	_ Ster / Jahr	Strom (Wärmepumpe)	kWh / Jahr	
5) Bisherige Heizungsanlage				
Kesselleistung	kW	Baujahr Kessel		
Solaranlage vorhanden				
Unverbindliche Interessensbekundung				
Unter der Voraussetzung, dass der Anschluss ans Nahwärmenetz mit einem attraktiven Wärmepreis angeboten wird, bin ich an einer Wärmeversorgung aus dem geplanten Nahwärmenetz interessiert:				
	□ Ja	□ Nein		

Jetzt liegt es an Ihnen, an den Bürgern von Breitenholz, ob ein Wärmenetz auf Basis heimischer erneuerbarer Energien gebaut wird.

Ende der Präsentation

www.solarcomplex.de

www.buerger-energie-tuebingen.de

Im Anhang weitere Informationen (falls gewünscht)

Was behindert Wärmenetze:

- Niedriger Ölpreis
- Mangelnde Fähigkeit der Kunden zur Vollkostenrechnung
- Standortfindung für Heizzentrale
- bei Solarthermie Flächenverfügbarkeit am Ortsrand Langwierige B-Plan und FNP-Verfahren

Was befördert Wärmenetze:

- eWärmeGesetz in Baden-Württemberg
- gute Fördersituation,

 durch KfW erneuerbare Energien Premium

 oder KWK Gosetz (BAEA) oder Wärmenet
 - oder KWK-Gesetz (BAFA) oder Wärmenetze 4.0
 - und evtl. Landeszuschüsse "effiziente Wärmenetze"

Dubai (u.a.)

So sieht "Wertschöpfung aus Energie" aus

Hier sammeln sich die Kaufkraftströme

Der höchste Wolkenkratzer der Welt: > 800 m

solarcomplex:

Das größte künstliche Inselsystem der Welt

Die größte Indoor-Ski-Halle der Welt

Summe aller regenerativen Wärmenetze

- ~ 90 km Trassenlänge
- > 1.500 versorgte Gebäude (darunter viele kommunalen Großverbraucher)
- > 40 Mio. € Invest
- ca. 1/4 EK von den an solarcomplex beteiligten Aktionären
- ca. 3/4 FK von regionalen Sparkassen und Volksbanken
- Ersatz von ca. 5 Mio l Heizöl jährlich heißt:
- ~ 15.000 t CO2-Einsparung pro Jahr
- ~ 4 Mio € Kaufkraftbindung pro Jahr

Das ist regionale Wertschöpfung: Geschlossene Energie- und Geldkreisläufe

solarcomplex war immer Vorreiter und Innovationstreiber!

Gailinger Versorgung einer Reha-Klinik

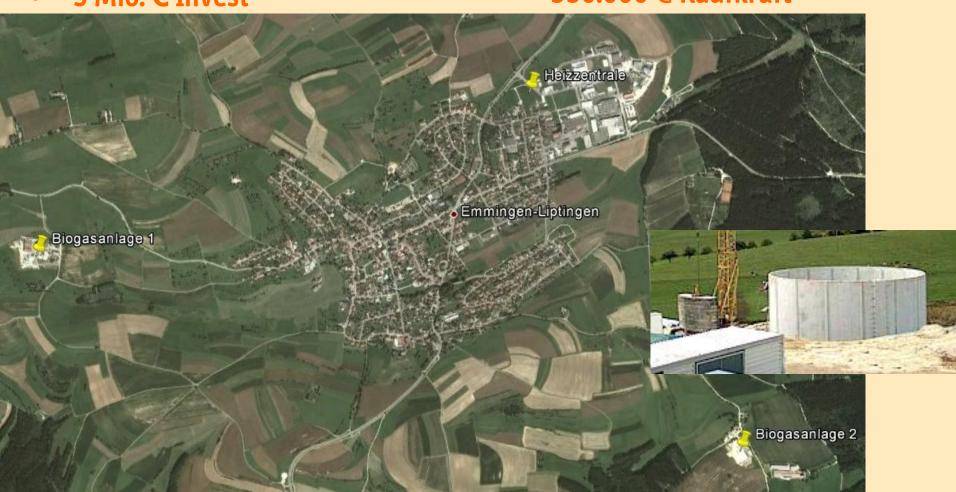
Mikrogasleitung von Johanni-Hof

Wärme ans Hegau-Jugendwerk:

> 1 Mio kWh

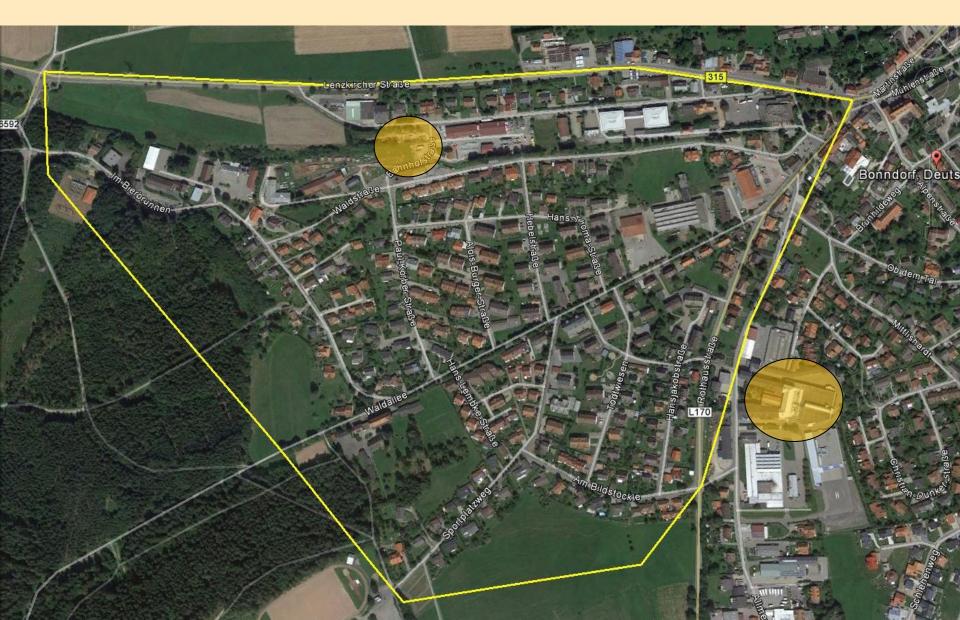
Stromerzeugung:

> 2 Mio kWh



Bioenergiedorf Emmingen erstmals m. Großwärmespeicher

- ~ 10 km Trassenlänge
- ~ 160 Anschlussnehmer
- ~ 5 Mio. € Invest


- Ersatz von ca. 400.000 l Heizöl jährlich heißt:
- ~ 1.200 t CO2-Einsparung
- > 350.000 € Kaufkraft

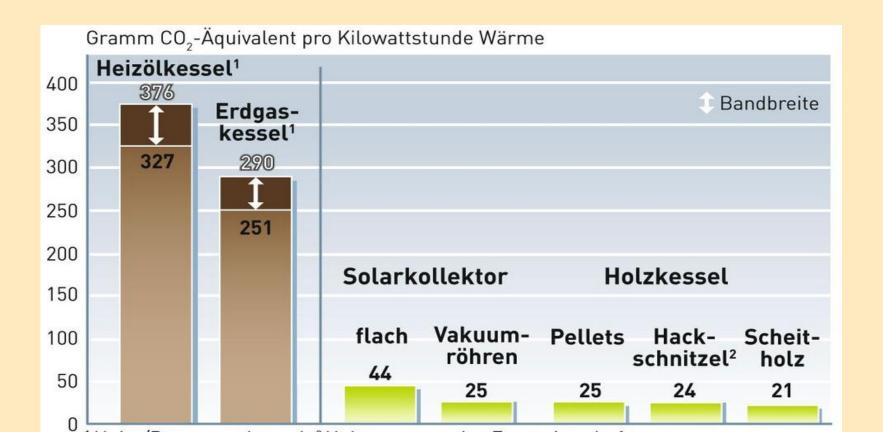
Bürger-Energie Bioeire one Bonndorf

erstmals mit industrieller Abwärme

Bioenergie Bonndorf I

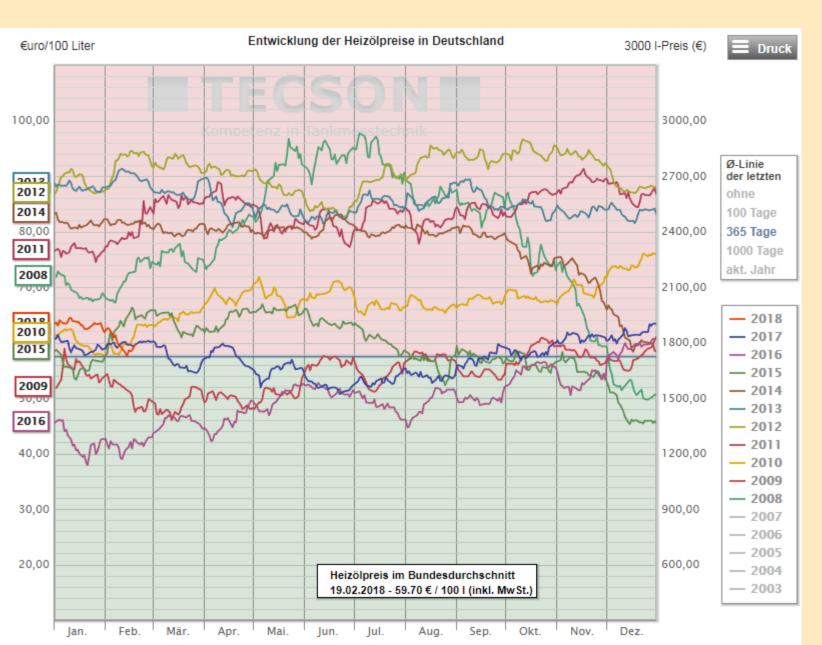
noch mit Heizzentrale und 2 Hackschnitzel-Kesseln

ganz ohne Heizzentrale, ausschließlich Abwärme!

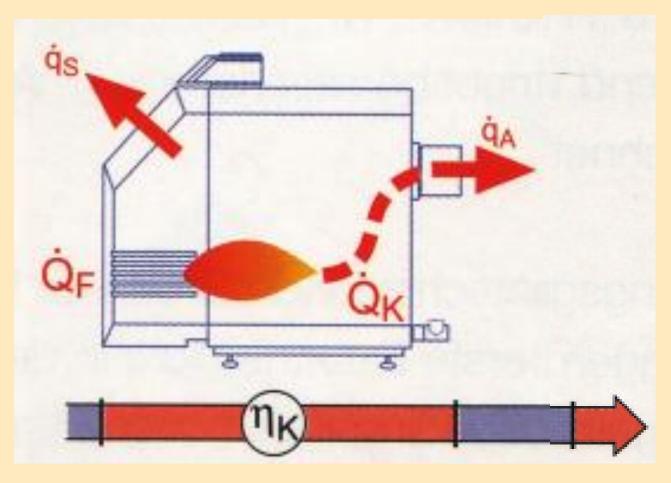


Wärmenetze Bonndorf – Auswirkungen für Kaufkraft und Klimaschutz

Ca. 1,4 Mio Liter Heizöl werden pro Jahr bei Kunden des Wärmenetzes ersetzt. Das bedeutet:


- knapp 1 Mio € Kaufkraftbindung (bei heutigen Preisen)
- rd. 4.500 t CO2-Einsparung

2008 – 2018: Mittelwert ~ 75 ct / Liter



Eingesetzte Energie = 100% Wirkungsgradverluste = ca. 30%

Nutz-Energie = ca. 70%

Was kostet eine Kilowattstunde Nutzenergie (!) aus Heizöl?

Annahmen:

- 1 Liter Heizöl hat 10 kWh Energieinhalt
- 1 Liter Heizöl kostete im Schnitt der vergangenen 10 Jahre ~ 75 cent brutto

Berechnung:

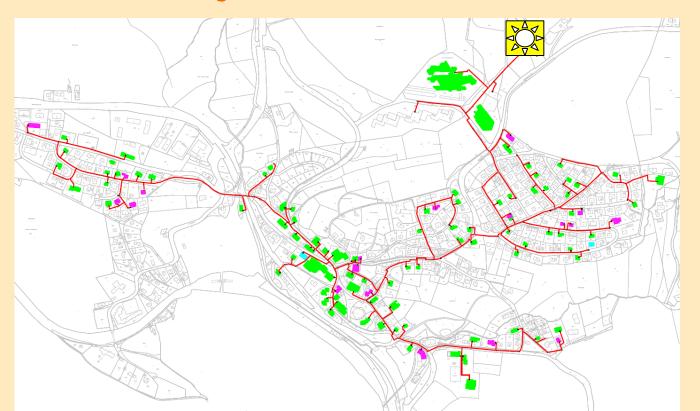
- mit Wirkungsgrad 70 % ergibt das 7 kWh Nutzenergie
- 75 cent geteilt durch 7 kWh = 10,71 cent / kWh (brutto)

Wirtschaftlichkeitsvergleich auf Basis Vollkosten!

	Verbrauchskosten 10 ct / kWh (Brennstoff)
+	Betriebskosten $1-2$ ct / kWh (Schornsteinfeger, Reparatur, Wartung)
+	Kapitalkosten 2 – 4 ct / kWh (Abschreibung bzw. Rücklage für Invest)
=	Vollkosten 13 – 16 ct / kWh

Ein realistischer Vollkostenpreis "Wärme aus Heizöl" liegt bei mindestens 13 ct / kWh brutto! Je nach Größe u. Alter der Öl-Heizungsanlage und fossilem Vergleichspreis.

Ohne Zusatzinvestition durch regeneratives Wärmegesetz!


2018 9: Wärmenetz Schluchsee

- Netzlänge 8,7 km / gut 100 Anschlussnehmer
- verkaufte Wärme ~ 7 Mio kWh/a, Ersatz von rund 1 Mio l Heizöläquivalent
- Wärmeerzeugung 2 Holzhackschnitzelkessel, 900 + 1.200 kW (ca. 78 % der Wärmemenge)

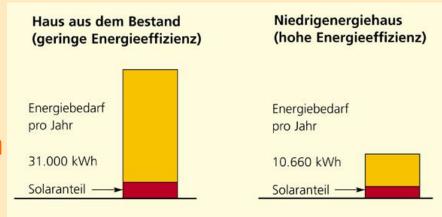
 Solarthermische Anlage 3.000 m² Kollektorfläche (ca. 20 % der Wärmemenge)

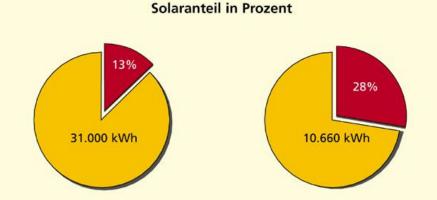
 Öl-Spitzenlast- u. Reservekessel 3.000 kW (unter 2 % der Wärmemenge)
- Investitionskosten gesamt ~ 8,7 Mio Euro

Wohin fließt unser Geld? Kaufkraftverlust verschiedener Energieträger

	Heizöl	Erdgas	Bioenergie aus Forst- u. Landwirtschaft
Region	€ 16	€ 14	€ 65
Deutschland	€ 25	€ 12	€ 32
International	€ 59	€ 74	€ 3
Summe	€ 100	€ 100	€ 100

Quelle: solarcomplex, Holzenergie-Fachverband CH, Fa. Schellinger


- Büsingen ist keine exotische Ausnahme, sondern Trendsetter
- Wärmenetze ohne sommerliche Abwärme (Biogas oder industriell) wird solarcomplex zukünftig generell (!) mit großen Kollektorflächen planen bzw. nachrüsten, aktuell tun wir das in Randegg
- Wärmenetze, in denen die Biogasanlage nach EEG wegzufallen droht, werden die sommerliche Grundlast aus Solarthermie bereit stellen
- Der Preis für Biogaswärme wird sich im Sommer an Solarthermie orientieren müssen, d.h. max. 5 ct / kWh


 Aktuell kann Wärme aus Hackschnitzelheizungen für rund 3 ct / kWh, (bezogen auf den Brennstoff) eingekauft werden. Mit absehbarer Preissteigerung würde damit das Preisniveau in 10 Jahren ebenfalls bei rund 5 ct / kWh liegen

- Wenn Gebäude energetisch saniert werden, sinkt der Heizwärmebedarf, nicht aber der Warmwasserbedarf
- der solare Deckungsanteil wird automatisch größer
- Solarenergie und energetische Sanierung
 - schliessen sich nicht aus, sondern vertragen sich gut
- Ein möglicherweise sinkender
 Wärmeabsatz bei den Bestandkunden wird durch nachträgliche Anschlüsse neuer Kunden ausgeglichen

Süden Baden-Württembergs wird Verdichtungsraum für "große" Solarthermie

Bohlingen, in Betrieb Gemüsebau Kessler / 900 qm

Büsingen, in Betrieb solarcomplex / 1.090 qm

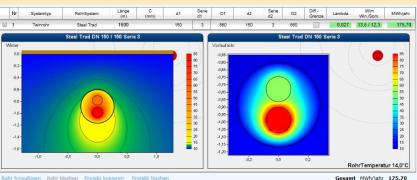
Liggerigen, in Bau Stadtwerke Radolfzell / 1.500 qm

Randegg, in Bau solarcomplex / 2.400 qm

Schluchsee, in Planung solarcomplex / 3.000 qm

Die Spezialisten von solarcomplex arbeiten mit der Industrie an innovativen Verbesserungen:

- Bonndorf erstmals 3-fach gedämmte KMR
- PEX mit Druckstufe 10



Ergebnis: Niedrigstmögliche Netzverluste

bei größtmöglicher Flexibilität im Mischnetz!

Bioenergiedorf Mauenheim

Mauenneim - Die Ausgangslage

- Der Ort bezog pro Jahr ~ 300.000 l Heizöl
- Der daraus resultierende Kaufkraftverlust beläuft sich auf
 - ~ 250.000 Euro jährlich (zu aktuellen Preisen)
- in 20 Jahren rund 20 Mio. € (mit realistischer fossiler Preissteigerung von ~ 10 % / a)
- Eine am Ortsrand betriebene Biogasanlage bot ~ 300.000 l Heizöl-Äquivalent (HÖÄ) als Abwärme an
- Ziel war strom- und wärmeseitige Vollversorgung aus eE und weitgehende Bindung der Kaufkraft in der Region

Bioenergiedorf Mauenheim - Heute

- Biogasanlage (430 kW) und PV-Anlagen (~ 850 kW) speisen etwa den 9-fachen Mauenheimer Strombedarf ein
- Wärmelieferung an 70 kommunale, kirchliche und private Gebäude (70% der Gebäude, 90 % des Wärmebedarfs)
- Abwärme aus Biogasanlage, ~ 3/4
- Hackschnitzelheizung 1 MW, ~ 1/4
- Nahwärmenetz ~ 4 km Trassenlänge
- Kaufkraftbindung ca. 250.000 Euro jährlich (300.000 l Heizöl werden durch heimische Energien ersetzt)
- Wertschöpfung bei Forst- und Landwirtschaft

- In der B'seeregion gibt es weder Öl, Gas noch Kohle
- auch kein einziges Großkraftwerk zur Stromerzeugung
- wohl aber Sonne, Biomasse, Wind- und Wasserkraft und Erdwärme
- ca. 90 % der kommerziell gehandelten Energie (Strom, Wärme und Treibstoffe) werden "importiert"
- entgegengesetzt zu den fossil-atomaren Energieströmen fliesst ein erheblicher Teil der Energiekosten als Finanzstrom aus der Region ab. Jahr für Jahr!

Die Dimensionen sind monströs

Energiekosten pro Kopf und Jahr:

rund 2.650 Euro

Quelle: Stat. Bundesamt: Private Strom-, Wärme- und Mobilitätskosten und Energiekosten in Gütern und Dienstleistungen

Einwohner Landkreis Konstanz:

ca. 265.000

Energiekosten Landkreis / Jahr:

rund 700 Mio Euro

Annahme: die Hälfte fliesst ab.

rund 350 Mio Euro

(Eine moderate Abschätzung bei 90 % "Import"quote, Es müsste vor Ort eine Gewinnmarge von 40% verbleiben)

Jede ersetzte kWh aus heimischen erneuerbaren Energien verringert die regional-wirtschaftliche Ausblutung. Systematisch und dauerhaft!